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The damping factor for free oscil lations of a viscous liquid in a circular  cyl indr ical  vessel is determined by ca l cu -  
lat ing the energy dissipated during a period. The dissipated energy is determined separately in and outside the boundary 
layer,  the motion o f  the liquid outside this layer  being assumed to be ident ical  with the motion of a perfect  l iquid.  

1. Consider the standing oscillations of a viscous heavy liquid of depth h in a cyl indr ical  vessel of radius a. We 
assume that everywhere outside the boundary layer  the liquid moves l ike a perfect liquid, and in determining this motion 
we neglect  the thicka]ess of the boundary layer .  

Then the veloci ty  potent ia l  for the S- th  mode of free osci l la t ion will  be [1] 

2a2~sc~ (~8 + )  ch @s - ~ - ~ ) s i n e  sin o~s t (1.1) 
cPs = eh C;sh / a) (~s 2 - -  t) J1 (~s) J1 

Here, r, r/, z are cyl indr ica l  coordinates with origin at the center of the free surface of the liquid, t is t ime.  J1 a 
first-order Bessel function of the first kind. gs the positive roots of the frequency equation I t ' (g )  = 0, w s the frequency of 
the S-th mode of osci l la t ion of the liquid, and g the acce lera t ion  of gravity.  

The frequency w s is given by 

o , , - -  

2. The term sin test in (1.1)  was obtained upon separation of variables.  We assume that the damping can be 
approximate ly  taken into account by formally introducing a factor exp (-nst) :i.n (1.1), i . e . ,  we assume that at any mo-  
ment,  even in the presence of friction, the l iquid moves l ike  a perfect  liquid (everywhere except  in the boundary layer).  
Comparison of the maximum 'values of the kinet ic  energy of the liquid in the S-th mode of osci l la t ion leads to the 

expression 

Co s T, (h) 
n, = ~ -  In Ts (t I _~_ T) ' (2.1) 

Here T s is the k inet ic  energy of the l iquid in the S-th mode, and T is the period. 

3. The dissipation of energy per unit t ime  is given by the integral  

A = ~ ~ (2e~ -q- 2s22 q- 2e3 ~ + 012 q- 02 ~ + 0a ~) dV, (3.1) 
io (v) 

Here is the viscosity of the liquid, e I, e2, es, 1/201, 1)~0z, 1/z0~ are the components of the strain rate tensor related 
as follows with the projec t iom v r, v~, v z of the l iquid veloci t ies  onto the axes of the cyl indr ica l  coordinate  system: 

e l =  Or ' 82= '7" ~ ,0r l  /' e 3 = ' O z  ' 

Ov~ 1 Ovz Ov z 0% i Ovr Ov~ v~ (3.2)  

0 1 = ~  + 7 0,1 ' 03=-'ff;'r + Oz ' 0 ~ -  r Orl +W-r  ----7-" 

Having determined the veloci t ies  v r, 
(3.1) over the entire volume of the l iquid.  

a 

after integrat ion and a series of transformations we get 

v~, v z from the expression for the potent ia l  (1.1),  we eva lua te  the integral  

Assuming that h is suff iciently large,  so that 

A.s = 4n~ta sea, 2~ (~8) sin2 ~ (3.3) 

where 

~* [2 (~s ~ -- I)J1 ~ (~8)+I -- .T~ (~.)(I -}- ~s2-~)--2 1 "-x-- J1~ (x)dx]. {~,) = (~,' - i)~ j1 ~ (;,) 
0 

(3.4) 
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Then the dissipation of energy during a period wLll be 

T 

10,---- As dt = 4rc~a3o}s e (~a) x =  ~ . 

0 

4. We can simplify the computation of the energy losses in the boundary layer by noting that at the side walls of 
the cylinder the terms with a v J 0 r  and i~v~/or considerably exceed the other components of the integrand in (3.1). We 
discard the above-mentioned small terms and disregard the boundary layer at the bottom of the cylinder. In order to 
find the terms with 0 vz]0 r and 0 v~/0 r we solve two auxiliary problems. 

In the first of these, an infinite cylinder of radius a, filted with a viscous incompressible liquid rotates about its 
axis, so that its wails have a velocity v = v0 sin wst. It is required to find the velocity distribution in the liquid for 
steady motion. 

For the first problem the Navier-Stokes equations degenerate into the single equation 

Ov~ [ O~v~ i 0% vt ) 
o---i- = ~ ' ~ - 5 ~  +-; - - -~r  ----~ } ' 

with boundary condition 

v~ (a, t) = v o sin est .  

Here v is the kinematic viscosity. Finding a solution in the form 

v~ (r, t) = R (r) ~ (t), 

we have 

1; r ~ 1; z ~ 0 ,  

v~ { 
,%. (r, t) --  v0~ x (r, t) = berl ~ (aps") .~ boil 2 (aps) bell (aps) ber, (rps) - -  

- -  berl (ap,) bei 1 (rp,)] cos cost + [bell (aps) boil (rps) -~ her1 (aP,) berl (rp,)] sin o~t} 

(o, = V~,/~)- 

The functions beq (x) and bell (x) are given by 

be h (x) -~ i hei 1 (x) = - -  or1 (x-Vdn). 

For the second problem the Navier-Stokes equations also degenerate into a single equation 

Ovz { O~vz I Ovz 
Ot - -  V \ Or ~ + r Or / '  Vr = v~ = O, 

with boundary condition 

( 4 . 1 )  

Vz (a, t) = v o sin o~st. 

Solving this problem, for the veloci ty we obtain 

Vo {[beio (a98) hero (aPs) - -  Vz (r, t) = u0~ 0 (r, t) = hero ~ (ap,) + heio ~ (aPs)J 

- - b e r o  (aps) bole (rps)J cos ost q- [beio (ap,) beio (rps) -t- bero (aps) bore (rps)] sin ost} (4.2) 

O, = F ~ / v ) .  

Here, as before, 

hero (x) + i beio (x) = Jo (xe-'/~nt) ' 

We assume that the liquid veloci ty at the interface between the boundary layer and the inner region is equal to the 
veloci ty  of a perfect liquid at the walls of the vessel. This enables us to find the velocity distribution in the boundary 

layer 

Vz (r, ~1, z, t) = s in(ost  Oz r=a (sin o)st ap. (r, t)), (4.3) 

1 0 % . ]  (s in coat - -  xp I (r, t ) ) .  
v~ (r, lq, z, t) =: sino~st aOrl Jr=a 

(4. 4) 
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If it is noted that for liquids of low viscosity aPs >> 1 (for water, for example, when a=  5 cm and u = 0.01 cm2/sec 
we have apl = 215), then, using the known asymptotic expansions of the functions ber n (x) and bei n (x) we can reduce 
the expressions (4.3) and (4.4) to the simpler form 

Vz = e h ( ~ s h / a )  (~s ~ -  t) sh - -  sinai 
(4.5) 

- -  ~ - ~  exp L--  (a - -  r) 

v ~ =  eh(~sh /a )  (~8 ~ -  t) ch ~s cos~] sin c o s t - -  

Evaluating integral (3.1) over the volume and then integrating with respect to time, we get the energy losses dur- 
ing a period in the boundary layer: 

Ps '  = ~s (~s ~ "  t)* (4.7) 

5. In order to determine the damping factor it is also necessary to know the total energy of the liquid 

d 2 r Ig,,ad r % ]'~' T8 = T cos j L ~ J J  (5.1) dV. 
L 

W) 

Here d is the density of the liquid. Evaluating integral (5.1), we get 

z~daa~ (~. + ) .  (5.2) 
T , - -  ~s(~s 2 -  1) th 

Since T, (t I -k T) = T, (tl) - -  P ,  - -  P, ' ,  in accordance with (2.1). 

cos Ts (5 .3 )  
ns = - ~ - ] n  T s  - -  P ,  - -  P s '  " 

But Ps + P / " ~  T8 ; therefore (5.3) may be approximately rewritten in the form 

r P8 q- Ps '  
ns - -  4n T s ( 5 . 4 )  

In (3.4) the first term in square brackets is greater than the others and the difference between terms rapidly in- 
creases in s. This permits the simplification of (5.4). Taking into account only the first term in (3.4), putting th (~sh / 
/ a) .~ t ,  and substituting (3.5), (4.7) and (5.2) into (5.4), we get 

2~;~s 2 ~Os ~s ~ + t 
n s - -  a2 -{- 2 ] / '2a  ~s"- -  I " (5 .5 )  

In this expression the first term characterizes the energy losses outside the boundary layer, the second those in the 
boundary layer. It is easy to see that as far as the first modes of oscillation are concerned the main role is played by the 
energy losses in the boundary layer. 

6. The above method of calculating the damping factor applies to liquids that do not form films of adsorbed mat-  
ter on the free surface, The presence of such a film leads to the appearance of a boundary layer in its vicinity and to a 
sharp increase in the damping factor [2]. The effect of a film can be roughly taken into account by assuming that it 
cannot be deformed in its plane and calculating the additional energy losses as for a plane boundary layer. 

G. N. Mikishev and N. Ya. Dorozhkin [3] recently published the results of an experimental  investigation of the 
free oscillations of various liquids, and these may be used to check the proposed method of determining the damping 
factor. In comparing the calculations with the experimental data it is necessary to bear in mind that in [3] the quantity 
nT was used as the logarithmic decrement, rather than the usual 0.5nT. 

A comparison of the experimental and calculated values for liquids not forming surface films shows quite good 
agreement.  Thus, at a cylinder radius a = 10 cm in the case of acetone (u = 0.6) the calculated value of the damping 
factor for oscillations of the first mode is 21% below the experimental figure, while in the case of turpentine oil (v = 
1.80) the corresponding value is 12% below. In the case of water with a small admixture of glycerin the experimental 
value for the damping factor is three times greater than the calculated value owing to neglect of the surface film effect. 
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